Neil Hanley

Overview

T٨

Outline Consideration Validity

TO-TA - AES Multiple TA S-Box Only TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusion

Questions

Profiling Side-Channel Attacks on Cryptographic Algorithms

Neil Hanley

Department of Electrical and Electronic Engineering, University College Cork, Ireland.

neilh@eleceng.ucc.ie

9th June 2014

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Neil Hanley

Overview

TΑ

Outline Considerations Validity

TO-TA - AES Multiple TA

S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR

SVN

ININ C

Conclusions

Questions

Overview

Power based side-channel attacks can be broadly split into two catergories:

- ► Non-profiling:
 - ► DPA, CPA, MIA, ...
 - Collision based attacks generally fall here too.
 - Often works with minimal assumptions.
 - Moderate to large number of traces required for successful key recovery.
- Profiling:
 - TA, Stochastic, SVMs, LR, NN, …
 - Stronger adversarial as profiling device required.
 - Can recover key with minimal or only a single trace.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Neil Hanley

Overview

T٨

Outline Consideration Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Acquisition Setup

Neil Hanley

Overview

ΤA

Outline Consideration Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Template Attacks Attack Outline Practical Attack Considerations Model Validity

Trace Only Template Attacks - AES Templates on Multiple Intermediate Values Templates on S-Box Only Templates on the Key

Trace Only Template Attacks - Multiplication

Leakage

Templates on Multiplication & Squaring Operations Attacking ECDSA

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Machine Learning Methods for SCA

Stochastic Methods Logistic Regression Support Vector Machines Neural Networks Comparison

Neil Hanley

Overview

ΤA

- Outline Considerations Validity
- TO-TA AES Multiple TA S-Box Only TA Key TA
- TO-TA Mul Leakage Mul TA ECDSA TA
- ML Methods SM LR SVM NN
- Conclusions

Questions

Template Attacks

Training (learning) stage.

$$\hat{\mu}^{(i)} = rac{1}{m^{(i)}} \sum_{j=1}^{m^{(i)}} x^{(j,i)}$$

$$\hat{\Sigma}^{(i)} = rac{1}{m^{(i)}} \sum_{j=1}^{m^{(i)}} \left(x^{(j,i)} - \hat{\mu}^{(i)}
ight) \left(x^{(j,i)} - \hat{\mu}^{(i)}
ight)^{ op}$$

Testing (classification) stage.

$$\mathcal{N}\left(x \mid \mu^{(i)}, \Sigma^{(i)}\right) = \frac{1}{\sqrt{(2\pi)^{n} \mid \Sigma^{(i)} \mid}} e^{-\frac{1}{2}\left(x - \mu^{(i)}\right)\left(\Sigma^{(i)}\right)^{-1}\left(x - \mu^{(i)}\right)^{\top}}$$
$$\Pr\left(o^{(i)} \mid x\right) = \frac{p\left(x \mid o^{(i)}\right) \Pr\left(o^{(i)}\right)}{\sum_{j=1}^{|\mathcal{K}|} p\left(x \mid o^{(j)}\right) \Pr\left(o^{(j)}\right)}$$

▲ロト ▲冊 ▶ ▲ ヨ ▶ ▲ ヨ ▶ ● の Q @

Neil Hanley

Overview

ΤA

Outline

Consideration Validity

TO-TA - AES Multiple TA S-Box Only TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Example Template Attack against AES

- 10k training traces.
- ▶ S-Box output of round 1.
- Hamming weight power model.
- ▶ 20 features selected via SOSD.

Amplified template attack.

Success rate.

イロト 不得 トイヨト イヨト

3

Neil Hanley

Overview

ΤA

Outline Considera

Consideration: Validity

FO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Full vs. Partial Key Recovery

- Key bytes not classified equally.
- Cannot arbitarily extrapolate results for a single key byte to key as a whole.

Byte success rates.

Key success rate.

イロト 不得 トイヨト イヨト

э

Neil Hanley

Overview

ΤA

Outline Considerations Validity

- TO-TA AES Multiple TA S-Box Only TA Kev TA
- TO-TA Mul Leakage Mul TA ECDSA TA
- ML Methods SM LR SVM NN Compare
- Conclusions

Questions

Practical Attack Considerations

- ► Power Model.
 - Bit, multi-bit, Hamming weight, identity.
- Normalisation
 - ► Norm, range, scale, z-score.
- Feature selection.
 - SOSD, SOST, Pearson's correlation, PCA, Fisher's linear discriminant, (NICV), (SNR).
- Training set size.
- Target intermediate value.
- Classification algorithm.
 - Euclidean distance, reduced templates, LDA, QDA.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Neil Hanley

Overview

ΤÆ

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Classification Algorithms

- The Identity model allows key recovery in a single trace, and has an increased number of relevant features.
- Taking the z-score can help to prevent a single feature dominating the classification.
- Increasing the training set beyound $\gtrsim 15k$ traces, doesn't decrease the expected error (QDA).
- Targeting the S-Box is the most efficient intermediate value for key recovery.

SOST.

Fisher's linear discriminant.

э

イロト イポト イヨト イヨト

Neil Hanley

Overview

ΤA

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusion

Questions

Model Validity

- 20 PIC Microcontrollers (cheap!!!)
- Basic devices \rightarrow advantageous for experiment.
- Improved classification when using multiple devices.

Single device templates.

Multi device templates.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Neil Hanley

Overview

ΤA

Outline Consideration Validity

TO-TA - AES

Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

emplate Attack

Attack Outline Practical Attack Considerations Model Validity

Trace Only Template Attacks - AES

Templates on Multiple Intermediate Values Templates on S-Box Only Templates on the Key

Frace Only Template Attacks - Multiplication

Leakage

Templates on Multiplication & Squaring Operations Attacking ECDSA

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Machine Learning Methods for SCA

Stochastic Methods Logistic Regression Support Vector Machines Neural Networks Comparison

Neil Hanley

Overview

ΤA

Outline Consideration Validity

```
TO-TA - AES
```

Multiple TA

S-Box Only T. Key TA

```
TO-TA - Mul
Leakage
Mul TA
ECDSA TA
```

ML Methods SM LR SVM NN

Conclusions

Questions

Templates on Multiple Intermediate Values

Target values *must* be seperated by a non-linear operation.

AES unknown plaintext attack target.

・ロト ・ 雪 ト ・ ヨ ト

э

Neil Hanley

Overview

ΤA

Outline Consideration Validity

TO-TA - AE

Multiple TA

S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Templates on Multiple Intermediate Values

- Use of the Hamming weight model has much lower success rate.
- Poor classification of the Plaintext/MixColumn bytes at fault.

Single attack instance.

Success rate.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Neil Hanley

Overview

ΤA

Outline Consideration Validity

TO-TA - AES Multiple TA S-Box Only TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN

Compare

Conclusion

Questions

Templates on S-Box Only

Target S-Boxes to extract the first sub-key byte.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへ⊙

Neil Hanley

Overview

T,

Outline Consideration Validity

TO-TA - AE

Multiple TA S-Box Only TA Key TA

TO-TA - Mu Leakage Mul TA

ML Methods

SM

NINI

Comp

Conclusion

Questions

Templates on S-Box Only

	S-Box							
Round	1	2	3	4	5	6	7	8
1	0.0087	0.1088	0.0753	0.0752	0.1271	0.0037	0.1555	0.1020
2	0.0104	0.0490	0.1103	0.0704	0.1068	0.0075	0.1632	0.1491

	S-Box							
Round	9	10	11	12	13	14	15	16
1	0.1170	0.0731	0.0050	0.1209	0.1279	0.1194	0.0797	0.0108
2	0.1911	0.1232	0.0124	0.1941	0.1931	0.1190	0.1467	0.0098

Comparison of S-Box classification errors.

Success rate for each key byte.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Neil Hanley

Overview

ΤA

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mu Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusion

Questions

Templates on the Key

- Attacking key bytes directly is unreliable.
- Better approach is to attack S-Boxes in different rounds of the key expansion.

Error for each key byte.

Success rate for entire key.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Neil Hanley

Overview

TΑ

Outline Consideration Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul

Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

emplate Attacks

Attack Outline Practical Attack Considerations Model Validity

race Only Template Attacks - AES

Templates on Multiple Intermediate Values Templates on S-Box Only Templates on the Key

Trace Only Template Attacks - Multiplication

Leakage

Templates on Multiplication & Squaring Operations Attacking ECDSA

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Machine Learning Methods for SCA

Stochastic Methods Logistic Regression Support Vector Machines Neural Networks Comparison

Neil Hanley

Leakage

MI Methods

Power Difference Between Multiplication & Squaring Operations

- Expected Hamming weight of the result of a multiplication operation different to that of a squaring.
- RSA and ECC operations consist of many single precision multiplications giving many potential points of leakage.

Squarin 0.4 dility of Bit Number

Hamming weight difference.

Probability of an output bit. イロト 不得 トイヨト イヨト

-

Neil Hanley

Overview

ΤA

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul

Leakage

Mul TA ECDSA T/

ML Methods SM LR SVM NN

Conclusions

Questions

Multiplier Leakage

Multiplier target leakage.

Neil Hanley

Overview

ΤA

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mu Leakage

Mul TA ECDSA T/

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Montgomery Product

Data:
$$N = (N_{w-1}, ..., N_1, N_0)_b$$
, $x = (x_{w-1}, ..., x_1, x_0)_b$,
 $y = (y_{w-1}, ..., y_1, y_0)_b$ with $0 \le x, y < N$, $R = b^w$,
 $gcd(N, b) = 1$ and $N' = -N^{-1} \mod b$
Result: $A \leftarrow x y R^{-1} \mod N$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$\begin{array}{l} A \leftarrow 0 \ ; \\ \textbf{for } i = 0 \ \textbf{to } w - 1 \ \textbf{do} \\ u_i \leftarrow (a_0 + x_i \ y_0) N' \ \textbf{mod } b \ ; \\ A \leftarrow (A + x_i \ y + u_i \ N) / b \ ; \\ \textbf{end} \end{array}$$

if $A \ge N$ then $A \leftarrow A - N$; return A;

Neil Hanley

Overview

ΤA

Outline Consideration Validity

TO-TA - AES Multiple TA

S-Box Only T/ Key TA

TO-TA - Mu

Leakage

Mul TA ECDSA T

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Difference of Means

- Large peak for each round.
- Double peak for initial round.
- Smaller peaks where initial word is re-used.

Difference of means trace.

Difference of means initial loop.

・ロト ・ 理 ト ・ ヨ ト ・ ヨ ト

3

Neil Hanley

Overview

ΤA

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA

TO-TA - Mul ^{Leakage} Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusion

Questions

Tempate Attack on 1024-bit Montgomery Multiplication

- Equivalent to recovery of a single key-bit in an RSA exponentiation.
- Single trace recovery overcomes many countermeasures.
- Longer keys lead to more efficient attacks.
- Error equally distributed between multiplication & squaring.

э

Neil Hanley

Overview

ΤÆ

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul ^{Leakage} Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusion

Questions

Tempate Attack on 160-bit Montgomery Multiplication

- Errors no longer equally distributed.
- For ECC, many multiplication operations per group doubling/addition - compensate for poorer classification.

Error rate.

Log likelihood.

ъ

Neil Hanley

Overview

ΤA

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Tempate Attack on ECDSA

Single-trace attack on ECC scalar multiplication of ECDSA signature.

- ▶ 192-bit Scalar multiplicand *k* must be random for each signature.
- Unified group operations for doubling & addition.
- Projective coordinates with random Z-coordinates used.
- Blinding of the base point P is not implemented, but knowledge of P is not utilised in the attack.
- Templates built for group operation.
- Determining the empheral secret k allows the recovery of the private key d which allows the forging of signatures.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Neil Hanley

Overview

T٨

Outline Consideration Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Tempate Attack on ECDSA

Full ECDSA power trace.

Mean group operation.

Cross correlation trace.

Zoomed x-correlation trace.

900

Neil Hanley

Overview

ΤA

Outline Consideration Validity

TO-TA - AES Multiple TA S-Box Only TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Tempate Attack on ECDSA

- Attacker needs to estimate the number of features via cross validation.
 - Optimal number of features here differs.
- Minimum error of 0.113 achieved on classification of group operations:
 - ► Expected that ≈ 32 operations will be incorrectly classified for 192-bit key.

Testing error.

Neil Hanley

Overview

ΤA

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods

SM LR SVM NN Compare

Conclusions

Questions

emplate Attacks

Attack Outline Practical Attack Considerations Model Validity

Frace Only Template Attacks - AES

Templates on Multiple Intermediate Values Templates on S-Box Only Templates on the Key

Frace Only Template Attacks - Multiplication

Templates on Multiplication & Squaring Operations Attacking ECDSA

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Machine Learning Methods for SCA

Stochastic Methods Logistic Regression Support Vector Machines Neural Networks Comparison

Neil Hanley

Overview

ΤA

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods

LR

50

Conclusions

Questions

Stochastic Methods

Introduced by Schindler et al. [SLP05].

- Linear regression based classification.
- Looks to model power consumption with less traces than TA.

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

- Deterministic & random trace parts modelled seperately.
 - Modelling of random part optional.
- Required to select basis function.
 - Bit-wise, identity, Hamming weight.
 - One-hot encoding.
 - Polynomial expansion.

Neil Hanley

Overview

ΤA

- Outline Consideration Validity
- TO-TA AES Multiple TA
- S-Box Only TA Key TA
- TO-TA Mul Leakage Mul TA FCDSA TA
- ML Methods
- SM
- ER.
- NN
- Com
- Conclusion
- Questions

Logistic Regression

- Binary classification algorithm.
 - ► Bit-wise, one-v-all, one-v-one, binary tree.
- Tunable regularisation parameter to prevent overfitting to training data.
- Learned weighting parameters applied directly to trace to determine if class label is 0 or 1 based on sign of output.
- Sigmoid function can be used to convert distances to probabilities.

Sigmoid function.

Neil Hanley

Overview

ΤA

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN

Compare

Conclusions

Questions

Support Vector Machines

Seperately suggested by Hospodar *et al.* [HM+11], and Lerman *et al.* [LBM11].

- Binary classification algorithm.
- Non-parametic approach.
 - Greater flexibility in feature construction & selection
- Kernel selection, regularisation parameter.
- Probabilistic output via Platt's method [Pla99].

Neil Hanley

Overview

T/

Outline Consideration Validity

TO-TA - AES Multiple TA S-Box Only TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusions

Questions

Neural Networks

- Originally meant to mimic the operation of the brain,
- Backpropogation algorithm used to learn weighting parameters.
- Select the number of hidden layers/units, regularisation parameter.
- Sigmoid function used as activation unit.

Neil Hanley

Overview

ΤA

Outline Consideration Validity

TO-TA - AES Multiple TA S-Box Only TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

O......

Comparison - Multiplier (binary)

Classifier	Parameters
SM	Max method with half the trace for estimating the noise,
	2 nd order polynomial expansion performed on class labels
LR	regularisation parameter $\lambda=100$
SVM	linear kernel with 10-fold cross validation used to estimate
	cost C
NN	single layer with 100 hidden units and $\lambda=100$

ł

Neil Hanley

ML Methods Compare

Comparison - AES (multiclass)

Classifier	Parameters
SM	Max method with half the trace for estimating the noise, 6^{th}
	order polynomial expansion performed on bit decomposition
	of class values
LR	One-v-All multi-class, regularisation parameter $\lambda=1$
SVM	One-v-All multi-class with the number of "All" samples re-
	stricted to $ imes$ 10 of the "One", Gaussian kernel with 10-fold
	cross validation used to estimate cost C and σ
NN	single layer with 100 hidden units and $\lambda=1$

ł

Neil Hanley

Overview

ΤA

Outline Consideration Validity

- TO-TA AES Multiple TA S-Box Only TA Key TA
- TO-TA Mul Leakage Mul TA ECDSA TA
- ML Methods SM LR SVM NN Compare

Conclusions

Questions

Conclusions

- In geneal, LDA can be expected to perform at least as well as QDA where the noise has a Gaussian distribution, for a lower computational cost due to the pooling of covariance matrices.
- Single-trace attacks are feasible against both symmetric and asymmetric algorithms hence countermeasures based on restricting the number of available attack traces must be supplemented with other approaches.
- Neural networks can have comparable performance to LDA, and are relatively robust when *reasonable* parameters are chosen.
- Optimal feature selection is non-trivial, with subsequent impact on classifier performance varying.
 - Junk in = junk out!!!

Neil Hanley

Overview

T/

Outline Considerations Validity

TO-TA - AES Multiple TA S-Box Only TA Key TA

TO-TA - Mul Leakage Mul TA ECDSA TA

ML Methods SM LR SVM NN Compare

Conclusion

Questions

Questions

neilh@eleceng.ucc.ie
n.hanley@qub.ac.uk

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ